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Surface waves in flowing water and their stability are studied. With U(y) de- 
noting the mean velocity and d the depth of water, the following results are 
obtained: (i) in the plane of the complex wave velocity, c = c, + ici, all eigenvalues 
c with a positive ci lie within a semicircle which has as its diameter the range of 
the velocity U(y) of the primary flow, y being the vertical co-ordinate. (ii) If V”(y) 
does not change sign and U is monotonic in the field of flow, singular neutral 
modes (for which c = U somewhere in the field of flow) are impossible and the flow 
is stable. (iii) If U is analytic and U“ vanishes at  the point or points where U is 
equal to the same constant U, and where U‘ is not zero then a t  least one neutral 
mode exists with c = Uc, provided U ( d )  + U,. (iv) If U is monotonic and UN/( U - c) 
is finite and non-zero at  the critical point (c real), where U“ vanishes, then the 
neutral mode mentioned in (iii) above is contiguous with unstable modes. 
(v) If U“ < 0 and U‘ 2 0 there are waves with c < U(O), with a finite maximum 
wavenumber Icc corresponding to c = U(0)  and with c decreasing monotonically 
to a finite c,, for k = 0. (vi) If U“ < 0 and U‘ B 0 waves of all wavenumbers can 
travel with c > U ( d ) .  The eigenvalue c for any Ic is bounded. 

1. Introduction 
The question of surface waves in flowing water is inseparable from the question 

of their stability. In  previous studies of this question, by Burns (1953), Hunt 
(1955) and Benjamin (1962)) the question of stability has not been posed. With 
U(y) denoting the velocity of the primary flow at elevation y, Burns found that 
if U”(y) is non-positive and U(y) increases monotonically with y’then two real 
values of the wave velocity exist for long waves, one of which is greater than the 
surface velocity U ( d ) ,  d being the depth of water, and the other less than U(0) .  
Benjamin (1962) questioned the existence of the smaller c < U(0)  claimed by 
Burns. In  his criticism Benjamin seems t o  believe that for U”(y) < 0 a singular 
neutral mode with U ( 0 )  < c < U ( d )  exists when U ( d )  is very much greater than 
the speed of very long waves in quiet water. However, Burns’s conclusion is sup- 
ported by the present work. Hunt was not concerned with whether a neutral 
mode may be singular in his calculation of (real) eigenvalues of c for a seventh- 
power law for U ( U  = C ~ ) .  It will be seen in this paper that unless U N ( y )  vanishes 
somewhere in the field of flow there cannot be singular neutral modes with 
c = U(y) for 0 < y < d. 

14 F L M  51 
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The present work is concerned not only with surface waves but their stability. 
Where it deals with neutral waves the approach is different from those of previous 
writers. 

2. Governing equations 
If p denotes the pressure perturbation, that is, the deviation of the pressure 

from the hydrostatic pressure, p denotes the (constant) density, t denotes the 
time, and x and y are Cartesian co-ordinates, with y measured in the vertical 
direction, then the linearized equations of motion of a liquid, with viscous 
effects neglected, are 

(1) 

P@t+ UV,) = - P g ,  ( 2 )  

p(ut+ uuz+ U‘V) = -px, 

where u and v are the components of the velocity perturbation in the directions 
of increasing x and y, respectively, U is the mean velocity, which is in the direc- 
tion of x and is a function of y only, subscripts denote partial differentiation and 
primes on U denote differentiation with respect to y. The equation of continuity 

u,+vy = 0 

, allows one t o  use the stream function $ in terms of which 

We shall assume 

where 

u=$,, v = - $  X’ 

@ = f( y) eik(z-et)  

c = c, + zci 

is the wave velocity. Eliminating p between (1) and ( 2 )  and using (3) and (4) 
we arrive at  the well-known equation 

f ” + [ U ” / ( c - U ) - k 2 ] f  = 0. (6) 

It is sometimes more convenient t o  use the function P ( y )  defined by 

f ( Y )  = (c- U)P(Y). 

In  terms of F(y) ,  (6) becomes, as can be readily verified, 

[ ( r : - c ) ~ P f ] ’ - k ~ ( ? 7 - c ) 2 P  = 0.  

The boundary condition for f at the bottom, where y = 0, is 

f(0) == 0. (8) 

P ( 4  -P97 = 0 ,  (9) 

At the free surface the condition is 

where 7 is the displacement of the free surface from its mean position. Since the 
kinematic condition at  the free surface is 

7 t + U 7 1 = v = - $ z ,  (10) 
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from ( l ) ,  (9) and (10) we obtain, remembering that p also has the factor 

exp i k (x  - c t ) ,  

In  terms of P(y) ,  (8) and (11) become respectively 

P(0) = 0 

and (U-c)ZP’(d) = gF(d). 

3. The semicircle theorem 

apply to flows with a free surface. With W = U - c we can write (7) as 
By a slight extension Howard‘s semicircle theorm (1961) can be generalized to 

(WZP’)’ - PW2P = 0. (14) 

Multiplying this equation by F*, integrating from zero to d and using (12) and 
( 13) whenever necessary, we have 

W2( IF‘] 2 + k21PI 2) dy - g IF(d) 12 = 0, (15) 

where the limits of integration are understood. The real and imaginary parts of 
(15) are 

1 [ ( U - c,)~ - c:] Q dy - g IP(d) I = 0 (15a) 

2 ~ ,  ( U  - c,.) Qdy = 0,  (15b) 

(16) 
s and 

where Q = IP’12+k21F]2. 

If c1 is not zero then 

and (15a) can be written as 

s U 2 Q d y  = (c ,~+c$)  Qdy+glF(d)I2.  s 
If a and b are the minimum and maximum of U respectively, so that a < U < b,  
it is obvious that 

0 2 (U-a) (U-b)Qdy = U2Qdy-(a+b) UQdy+ab Qdy. s s s s 
Using (1 7) and ( 18) we then have 

0 2 [c: + C: - (a + b) c, + ab] Q dy + g IF(d) I 2, s 
from which it follows that 

[c, - *(a + b)I2 + c: < [&(a + b)I2 - ab = [+(b - a)I2. (19) 

Hence the semicircle theorem: 
14-2 
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THEOREM 1. The complex wave velocity c for any unstable mode must lie 
inside the semicircle in the upper half of the complex c plane which has the 
range of U for diameter. 

4. The Reynolds stress 
We have just seen that if c, is outside of the range of U then ci must be zero. Such 

wave modes, if they exist, are called non-singular modes. On the other hand, if 
c, falls within the range of U then cimay or may not be zero. Suchmodes, if ci = 0, 
are called singular neutral modes. In order to study singular neutral modes and 
the unstable modes contiguous to them (as we shall see later) we consider the 
Reynolds stress in the fluid defined by 

(20) 
__ 

7 = -puv, 

the bar indicating a time average. Remembering that u and v are the real parts of 
f '(y) eik(z-ct)  and - ilcf (y) eik@-ct) respectively we easily obtain 

(21) 7 = iplc Im (f*f') eak@ = (pk/4i) (f*f' -#*') ezkcit ,  

wheref* is the complex conjugate off. If we differentiate (21) and use (6) we 
obtain the expression of Foote & Lin (1950): 

If now we let ci approach zero we see that drldy approaches zero everywhere ex- 
cept at  the critical point, where U = c,. Integration of (22) across the critical point 
yields the jump? in 7 as ci approaches zero: 

which is given by Lin (1955, p. 54), the subscript c meaning 'critical'. Thus for a 
singular neutral mode T is constant between critical points, but suffers a jump 
as given by (23) across a critical point. 

Now consider the Reynolds stress at  the free surface. From (11) and (21) it 
follows that at  the free surface 

where all variables depending on y are to be evaluated at  y = d. It is evident that 
T = 0 if ci = 0. Hence for a neutral mode the Reynolds stress is zero at  the free 
surface. At  ths bottom, where f is zero, the Reynolds stress is zero for any mode, 
neutral or unstable. 

The jump in T at the critical point is zero if U; is not zero but either UA or v 
is zero there. If U is monotonic there can be only one critical point. If at that point 

t One referee of this paper thinks the validity of (23) depends on the existence of unstable 
modes with complex values of c in the neighbourhood of the real c under discussion. The 
author of this paper does not share this view but chooses to record the disagreement here. 
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U“ is not zero and v cannot be zero then singular neutral mode for that c (real) 
is not possible, since there is a jump in 7 which is, however, prohibited by the 
boundary conditions. 

5. Sufficient conditions for stability 

(8) and (111, 

Multiplying (6) by f * and integrating in the fluid domain, we have, upon using 

in which the subscript d indicates that the bracket is to be evaluated at  y = d. 
After multiplication by - 1, the imaginary part of (25) is 

If U“ < 0 and U’(d) 2 0, (27) 

and we suppose ci + 0, then (26) demands 

U ( d )  = max U < c,. 

But, by theorem 1, if (28) is satisfied ci must vanish, leading to a contradiction 
of the supposition ci 

THEOREM 2 (a).  If U” < 0 throughout the fluid domain and U’(d) 2 0, the free- 
surface flow is stable. 

By almost identical arguments we also have 

THEOREM 2 ( b ) .  If U” > 0 throughout the fluid domain and U’(d) < 0, the 

Actually theorem 2 (b)  is an obvious consequence of theorem 2 (a)  since upon 

0. Hence ci must be zero if (27) is satisfied and we have 

free-surface Aow is stable. 

reversing the positive direction of flow theorem 2 (b)  becomes theorem 2 (a).  

6. Singular neutral modes 
If (27) is satisfied we can show that singular neutral modes are impossible. Let 

c be real and U = c at  y = yc > 0. First, we note that v p 0 (i.e.f p 0) at  this 
point. For if f(y,) were zero, then multiplying (6) by f* and integrating between 
zero and ye we would have 

which is evidently absurd since U < G and U” < 0 in the domain of integration. 
Hence f(y,) p 0. Note that if f(y,) = 0, f contains only the solution fi which is 
analytic at  ye and contains the factor (y - ye). Hence all the integrals are conver- 
gent. The other solution of (6) is of the form 

U; 
f 2  = 1 + ... +qfl(Y-Yc)ln (Y-Yc), 
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as is well known. Then if (27) is satisfied the jump in T across the critical point 
(if any) given by (23) cannot be zero. Since r is zero both at  y = 0 and at  y = d,  
this jump cannot happen. Hence there cannot be a critical point, i.e. there cannot 
be a singular neutral mode if (27) is satisfied. The same is true if U“ > Oand 
U‘ < 0. Hence we have 

THEOREM 3. If U is monotonic and the U-y curve has no point of inflexion, 

Note that sincef(0) = 0,  if yc = 0 the solution must be the non-singular one fi. 
We shall now show that a singular neutral mode exists if U is analytic and 

monotonically increasing and U” (y) vanishes at some point in the fluid domain. 
In fact, the c will be the U at the point where U“ vanishes. For then 

singular neutral modes are impossible. 

K(y)  = U”/(c- U )  (30) 

is analytic everywhere, including the critical point ye. We can then apply the 
Sturm-Liouville theory to (6) and its boundary conditions. With 

U(y,) = c and Utf(yc) = 0,  (31) 

a solution satisfying (8) can always be found for any k .  But we have to show that 
(1 1) can be satisfied for that c and some real value of k ,  with (8) satisfied. To do so 
we multiply (6) by U - c and integrate from zero to d, obtaining 

[ U ( d ) - ~ ] f ’ ( d ) - [ U ( O ) - ~ ] f ’ ( O ) - f ( d )  U ’ ( d ) - k 2  (U-c)fdy = 0. (32) s 
We may assign the value 1 tof1(0), since the eigenfunction can be multiplied by 
an arbitrary constant, and for convenience denote the positive number c - U ( 0 )  
by the symbol c’. Then (32) can be written as 

in which all functions of y, except those inside the integration sign, are evaluated 
at y = d,  where, one recalls, U-c is positive. We know from the Sturm theory 
that if k2 increases f ’ ( d ) / f  (d)  will increase. For k = 0,  

with all functions of y evaluated a t  d. Very near yc, just above it, U’/(U-c) is 
positive and as large as we please, and hence is greater than? f ‘ i f  evaluated at 

This is so becausef(y,) cannot be zero, as can be seen from an equation similar to  (32), 
with yc replacing d. 

EU(yc)-clf’(y,)-[U(O) -cIf’(O)-f(y,) WY,) - k z J ; e ( U - c ) f d Y  = 0. 

The dominant term inf’(y) near yc comes fromfi(y) and is equal or proportional to 

since the expansion off,(y) near yc starts with the term (y -ye). The term U(y) - c behaves 
like U’(y,) (y - y,) near yc since u‘(y) is analytic. Hence the first term in the equation vanishes. 
If we set k equal to zero then f (yc) cannot be zero, since the second term in the equation is 
not zero. Hence f’lf can only be logarithmically large, whereas U‘/( U -  c )  can be large like 

U: In (Y - yew;> 

(Y - 
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the same place. Sturm's second comparison theorem then says that at  y = d 
U'/( U - c)  must be greater thanf'lf, since for k = 0 we have 

and 

U" 
u - c  

f--f = 0 

( U - c )  II -- U" ( U - c )  = 0, u - c  

(34) 

(35) 

so that f and U - c satisfy the same differential equation. According to this conclu- 
sion, since c'/(c - U )  is negative f ( d )  must be positive as can be seen from (33a). 
In  fact f(y) cannot vanish for y > y,, for otherwise we would have a f'(y)/f(y) 
as large as we pleased above or below the zero off(y). Hencef(d) $I 0 for k = 0,  
even if f(y) is not the eigenfunction. If f(y) is the eigenfunction then the free- 
surface condition forbids f ( d )  to vanish. (From Sturm's first comparison theorem 
we also see that f cannot vanish below y, except once, at  y = 0. Thus for k = 0 ,  
f(y) vanishes only at  y = 0.) Hence for a very small k the two last terms in (33) 
definitely have a negative sum. The question then is whether f ' ( d ) / f ( d )  will in- 
crease to the value specified by (I 1) for the c under consideration as k2 increases 
from zero, that is, whether the sum of the last two terms in (33) will reach g / (  U - c ) ~  
evaluated at d.  To answer this question, let us see how those terms behave at  
large k2. Recalling that the K(y) given by (30) is analytic let us denote its maxi- 
mum value by M and its minimum value by m. Sincef is made to vanish at  y = 0 ,  
andf'(0) = 1, it  can be readily shown that for k2 > M ,  

sinh (k"y)/k" < f(y) < sinh (k'y)/k', (36) 

where k" = ( k 2 - M ) )  and 7GI = (k2-m)*. 

In  fact (36) is a consequence of Sturm's second :comparison theorem, stating 
that 

(37) 

Integrationof (37) gives (36). The integralin (33)' denoted by I ,  can be written as 

k" coth k"y < f'(y)/f(y) < k' coth k'y. 

I = I ,  + 12, 
d 

where -71 =/ovc(v-c)fdY' 4 =/vc(o-c)fdY. (38) 

Since f is positive for k2 > M ,  on inspection of (6), withf'(0) = 1, we see that I, 
is negative and I2 positive for k2 > M .  Let us define two numbers a and@ such that 

a(y,-y) > c-U for y < y,, 
P(y-yc) < 17-c for yc 6 y. 

Then 

(39) 

(40) 

ay, a 
k'2 k'3 = k"2 (d - y,) cosh k"d - k"3 (sinh E"d - sinh k"y,) - - - - sinh k'y,. P P 

(41) 
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For large k2,  then, the integral 1 behaves like 

provided d + y,, and the last term in (33) behaves like 

kp (d - y,) cothkd. 
U ( d )  - c 

The term in (33) containing c‘ behaves like 
C I  k 

U ( d )  - c siiih kd 

for large k and is negligible compared with (42). As k increases, (42) increases 
without bound. Hence, being deficient at  k = 0, as compared with (1 l), f’(d)/f(d) 
must finally reach the value specified in (11) as k increases. Hence a singular 
neutral mode exists under the conditions stated and with c given by (31). 

We have, for convenience of exposition, assumed U to be monotonically 
increasing. The same conclusion is reached if it is monotonically decreasing. 
In  fact, the conclusion still holds even if U is not monotonic, provided that 
U“ vanishes at  all points where U = c. We shall sketch the essence of the proof 
as follows. 

(i) If there is more than one point at which U = c, U - c vanishes more than 
once in 0 6 y < d. Hence using (34) and (35) for comparison we know that for 
k = 0 f vanishes at least once in the same interval (not including y = 0, where f 
is always zero). Hence on increasing k we can always makef(d) = 0 and f ’ (d )  < 0. 
On increasing k a little more, it is evident thatf’(d)/f(d) can be made as near minus 
infinity as we please. Therefore the ‘deficiency’ off’(d)/f(d) as compared with its 
value demanded by (1 1) is established for some k2 = kg > 0. 

(ii) As k2 increases beyond kg, f is always positive for y > 0. Then, by a pro- 
cedure similar to the one we have used above to discover the behaviour of I for 
large k2 we can ulwuys show that the last term in (33) increases without bound 
as k2 increases indefinitely, provided U ( d )  + c, whether U ( d )  - c  is positive or 
negative. It can in fact be shown that the integral I is dominated by that part of 
it which is between the largest yc and d, and that the last term in (33) is positive 
and increases without bound as k2 iiicreases indefinitely. Hence the ‘deficiency ’ 
mentioned in (i) can always be exactly eliminated, arriving at  a neutral mode 
with c equal to U at one or more points of the flow. This mode really should not be 
called ‘singular’ any more. 

Hence we have 

THEOREM 4. If U is analytic and U“ vanishes at  the point or points where U 
is equal to the same constant U,  and where U’ does not vanish, then at least one 
neutral mode exists with c = U,, provided U ( d )  + U,. 

The reason for using the words ‘ at least ’ is that if there is more than one point 
at which U = U, and U“ = 0, (1 1)  may well be satisfied for more than one positive 
value of k2. We have only shown that at  least one such value exists. It can also be 
shown that for any k the eigenvalue c cannot be U(d) ,  whether y = d is a critical 
point or not. 
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7. Unstable modes contiguous to singular neutral modes 
If  we vary k2 slightly from its eigenvalue for the singular neutral modes men- 

tioned in theorem 4 we obtain unstable modes. The demonstration is entirely 
similar to that of Lin (1955, pp. 122-123), the difference in the upper boundary 
condition causing no trouble whatever. We shall not reproduce Lin’s analysis 
but shall only quote the results that can be obtained by his approach: 

the summation being over all the critical points (where U” vanishes and U = c). 
f, is the eigenfunction for the ‘singular ’ neutral mode. The free-surface boundary 
condition affects A but not B, except through f .  If there is only one y, and 
K(y,) isnot zero, B is not zero and a slight change in k2, be it positive or negative, 
will produce a positive ci. Otherwise B may be zero, in which case a change in k2 
produces only a change in c,. Hence we have 

THEOREM 5. If U is monotonic and K(y,) is not zero the neutral mode men- 
tioned in theorem 4 is contiguous to unstable modes. 

8. Non-singular neutral modes 
We shall restrict our attention to flows with the following properties: 

U”(y) < 0 and U’ > 0. (45) 

There are two classes of waves: class 1, with c < U ( 0 )  and class 2, with c > U(d) .  

Glass 1 

Consider f i s t  the limiting case of c = U(0). For this case the c’ in (33) is zero, and 
comparison of (33) with (1 1) produces 

for y = d. Since f cannot vanish? in the domain of flow it is positive throughout, 
except at  y = 0. The discussion in $ 6  shows that the right-hand side of (46) in- 
creases without bound with k. Hence for some k = k, (depending on the flow), 
(46) and hence (1 1)  are satisfied. 

For k < k, we have c < U ( 0 )  and G decreasing algebraically as k decreases. 
This can be seen by using Sturm’s second comparison theorem on (6). For if k 
decreases and c does not decrease, the coefficient off in (6) increases and hence 
f ’ ( d ) / f  (d )  decreases according to Sturm’s second comparison theorem. On the 
other hand if c does not decrease [and c < U(0)] the same quantity,f’(d)/f(d), does 

7 Compare the f in ( b )  with the U - c in (35). Both vanish at  y = 0 if c = U (  0) and U - c 
has no other zero. Since k2 3 0, f cannot have a second zero. 
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not decrease, according to (11), leading to a contradiction. Hence c decreases as 
E decreases. It is also easy t o  see that c is bounded fork = 0. For otherwise, from 
the differential equation andf(0) = 0, we havef(y) = y, so thatf’(d)/f(d) = l/d, 
whereas (11) givesf’(d)/f(d) = 0. Hence 

THEOREM 6. Under conditions (45) there are waves with c < U(O), with a 
finite maximum wavenumber k = kc corresponding to c = U(O), and with c 
decreasing monotonically to a finite value c,, for k = 0. 

Class 2 

We now consider wave propagating downstream for which c > U ( d ) .  Since the 
expression in parenthesis in (6) is positive, f is non-oscillatory and is in fact 
monotonically increasing from zero, as y increases. Therefore it is easy to see 
that f(d) > d. Since f is only zero at  y = 0 and is positive elsewhere, and since c’ 
is positive, the equation 

obtained by comparison of (33) with (ll),  can always be satisfied, whatever the 
value of k .  Again it can be shown that the c corresponding to any k is bounded. 
Hence we have 

THEOREM 7. Under conditions (45) waves of all wavenumbers can travel 
downstream with c > U(d) .  The eigenvalue c for any k is bounded. 

The present results support those of Burns (1953) which are for long waves 
only. Benjamin doubted the existence of waves with c < U(0)  when the surface 
velocity is a long way supercritical and brought the amplitude of the waves and 
the possibility of separation into his arguments against the existence of such 
waves. I do not follow Benjamin’s arguments. However his statement that “in 
fact the wave will be convected downstream at an absolute velocity not  much 
different from g -  Go’’ ( g  = mean U ,  C,, = wave speed in quiet water) is contra- 
dicted by our theorem 3, since Benjamin’s statements apply explicitly to U” < 0. 

For an intuitive understanding of the propagation of long waves against the 
stream it is helpful to consider the density of the kinetic energy of very long 
waves, [f‘(y)lZ, with the factor $p omitted. If U” is negative throughout and 
U increases monotonically with y, then for k = 0 and c < U(0)  integration of (6) 
subject to the conditions f ( 0 )  = 0,  f’(0) = 1 shows that f’(y) decreases with y, 
initially at  least. Hence the kinetic energy at the bottom is at least a relative 
maximum and one is not surprised that a long wave can propagate its energy 
against the current near the bottom, where the situation is advantageous. This is, 
of course, merely an attempt to understand what goes on in an intuitive imprecise 
way. Its imprecision should not be allowed to cast doubt on the theory, which is 
entirely independent of such an intuitive argument. 

In  an open channel the waves with c < U(0)  can only be observed if a wave 
maker oscillates in the flowing water without blocking the flow. A stationary 
obstacle placed in the stream cannot be expected to produce upstream propa- 
gating waves, since even for a subcritical stream with uniform U ,  for which up- 
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stream propagating waves are known to exist, no such waves can be seen up- 
stream from the obstacle. This phenomenon is related to the fact that the phase 
velocity is greater than the group velocity and is an altogether different matter. 
It should not be used as a basis for doubting the validity of the present results. 

We note that for the special case of simple shear U" = 0, and the differential 
equation (6) becomes identical to that for potential flow. The flow is always 
stable and no mode is singular, but it is now possible to have any c between U ( 0 )  
and U ( d ) .  The only difference from wave motion in quiet water arises through (1 1). 

We note also that if viscosity is taken into account, waves propagating against 
the stream may well be daplped out and unstable modes with c, in the range of U ,  
permitted by the present theory, may be damped by viscosity to become neutral. 
These possibilities were pointed out by Velthuizen & Wijngaarden (1969), who 
considered a horizontal flow of a viscous fluid with a free surface. Strictly speak- 
ing, such a flow cannot be maintained, since there is no energy source, and not 
only waves, but the flow itself, must in time be damped out. Their calculation, 
however, is not without significance over a (relatively) short time. With this in 
mind we recall the results of Benjamin (1957) and Yih (1963), who found that for 
a viscous liquid layer flowing down an inclined plane: (a )  No long waves can pro- 
pagate upstream. (b) Undamped long waves propagate downstream with a speed 
equal to twice the surface (maximum) velocity of the mean flow, giving no 
indication of the existence of a singular neutral mode in the inviscid limit. 

This work has been supported by the National Science Foundation and the 
Office of Naval Research. 

Appendix 
A referee has pointed out an interesting physical explanation for the upstream 

propagation of long waves even if the surface velocity is high. In  what follows 
the original idea and the conclusion are his and the derivation is mine. 

In  a co-ordinate system moving with the waves the flow is steady. Choosing x 
and the stream function g+ in that system as independent variables, the total 
horizontal velocity component along a streamline in that system is 

in which (the notation used in the paper being used for the other quantities) 

8($) = ~ ( y )  - c, a = u + 7 ~ ' ( y )  = f'(y) eikz + 7 u'. 
We note that v =  07% 

(A 1 )  

which, in view of (3) and (a), means that 

that is t o  say that the F(y)  in (7) is the amplitude of 7. Then from (A 1) and (A2) 
we have 

Oh = (f' 0 -fur) eikz. (A3) 
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Now for long waves the governing equation is (34)) integration of which gives 

( U - c ) f ’ -  uy= c. 
h 

Thus lJa = Q e i k z ,  

which is independent of $. 
Since a2 is proportional to the kinetic energy (along a streamline) of perturba- 

tion for long waves, this kinetic energy is a maximum where 1 ??I is a minimum. 
For a monotonically increasing U(y) ( > 0 )  and for c < 0 (propagation upstream), 
0 = 101 is a minimum at y = 0. Thus the kinetic energy is large at  and near 
y = 0 if U ( 0 )  = 0, c < 0, and IcI < 1, and it is understandable why it can pro- 
pagate against the weak current U(y) near y = 0. 

R E F E R E N C E S  

BENJAMIN, T.B. 1957 Wave formation in the laminar flow down an inclined plane. 

BENJAMIN, T. B. 1962 The solitary wave on a stream with an arbitrary distribution of 

BURNS, J. C. 1953 Long waves in running water. Proc. Camb. Phil. SOC. 49, 695. 
FOOTE, J. R. & LIN, C. C. 1950 Some recent investigations in the theory of hydrodynamic 

HOWARD, L. N. 1961 Note on a paper by John W. Miles. J .  Fluid Mech. 10, 509-512. 
HUNT, J. N. 1955 Gravity waves in flowing water. Proc. Roy. SOC. A 231, 496-504. 
LIN, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press. 
VELTHUIZEN, H. G. M. & VAN WIJNCAARDEN, L. 1969 Gravity waves over a non-uniform 

YIH, C . 3 .  1963 Stability of liquid flow down an inclined plane. Phys. Fluids, 6 ,  321- 

J .  Fluid Mech. 2, 554-574. 

vorticity. J. Fluid Mech. 12, 97-116. 

stability. Quart. Appl .  Math. 8, 265-280. 

flow. J .  Fluid Mech. 39, 817-829. 

334. 


